Surface Modification of Polyvinylidene Fluoride (PVDF) Membranes by Low-Temperature Plasma with Grafting Styrene  被引量:3

Surface Modification of Polyvinylidene Fluoride (PVDF) Membranes by Low-Temperature Plasma with Grafting Styrene

在线阅读下载全文

作  者:陈剑 李继定 陈翠仙 

机构地区:[1]Department of Chemical Engineering,Tsinghua University

出  处:《Plasma Science and Technology》2009年第1期42-47,共6页等离子体科学和技术(英文版)

基  金:supported by the Major State Basic Research Program of China (No. 2009CB623404); National Natural Science Foundation of China (Nos. 20736003, 20676067); National High Technology Research and Development Program of China (No. 2007AA06Z317);Foundation of Ministry of Education of China (No. 20070003130);Foundation of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-08A01)

摘  要:In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.In order to control the surface pore sizes of polyvinylidene fluoride membranes and their distribution, low temperature plasma-induced grafting modifications of PVDF were studied to prepare hydrophobe membranes. By argon (Ar) treating and subsequent grafting reaction, a hydrophobe monomer, styrene, was introduced into the PVDF membrane. Fourier transform infrared attenuated total reflection (FTIR-ATR) was utilized to characterize the chemical and physical changes in the Ar plasma modified membrane. The surface modifications of PVDF membranes were investigated by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and differential scanning calorimeter (DSC). The water permeability and the solute rejection were measured by PVDF membrane modified in different graft conditions. Results demonstrated that the pores in the modified membranes get smaller and the distribution of pores gets narrowed with the increase in grafting reaction duration. Longer graft time caused the water flux of PVDF membrane to decrease from 578 kg/(m^2· h) to 23 kg/(m^2· h) and the solute rejection to increase from 73% to 92%.

关 键 词:Ar low-temperature plasma surface grafting STYRENE PVDF membrane 

分 类 号:TQ320.721[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象