基于非线性主元子空间的故障模式识别方法  被引量:4

Fault Pattern Recognition Based on Nonlinear Principal Component Subspace

在线阅读下载全文

作  者:邓晓刚[1] 田学民[1] 

机构地区:[1]中国石油大学(华东)信息与控制工程学院,东营257061

出  处:《系统仿真学报》2009年第2期478-481,共4页Journal of System Simulation

基  金:国家863资助项目(2004AA412050);山东省自然科学基金(Y2007G49)

摘  要:针对多元统计过程监控中的故障源识别问题,提出一种非线性主元子空间方法识别故障模式。该方法对不同类型的故障数据进行核主元分析,获得描述数据主要变化的非线性主元子空间,以此为基础构造故障模式分类器。考虑到核主元分析的计算复杂性,提出一种基于特征样本的非线性主元子空间算法,使用基于克隆选择原理的免疫算法提取特征样本用于故障模式识别。在Tennessee Eastman过程上的仿真结果说明,非线性子空间方法能够比线性子空间方法更有效的识别故障模式。To identify fault root cause in multivariate statistical process monitoring, nonlinear principal component subspace method was proposed to recognize fault pattern. Kernel principal component analysis was performed on different fault pattern datasets so that the nonlinear principal component subspace was available to describe data variance. The subspace classifier was constructed to identify fault pattern. In order to reduce the computation complexity, feature samples based nonlinear principal component subspace method was studied. Immune algorithm based on clonal selection principle was applied to compute feature samples, which were used for fault pattern recognition. The simulation results on Tennessee Eastman process show that nonlinear subspace method can identify fault pattern more effectively than linear subspace method.

关 键 词:故障识别 非线性子空间 核主元分析 免疫算法 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象