检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]昆明理工大学机电工程学院,云南昆明650093
出 处:《机电产品开发与创新》2009年第1期100-102,共3页Development & Innovation of Machinery & Electrical Products
基 金:云南省自然科学基金资助项目(2004E0011Q)
摘 要:提出了用连续小波变换与傅里叶变换相结合进行轴承外圈故障识别的新方法。先通过Morlet连续小波变换对故障轴承信号进行不同尺度的分解,再对其获得的小波系数进行快速傅里叶变换来识别故障特征频率。然后对不同信号做小波系数能量谱进行对比。优点在于能够在强噪声背景下较为精确的识别外圈故障。实际测试验证了新方法的正确性。A new method to distinguish rolling beating's out-ring malfunction based on continuous wavelet transform and Fourier transform is presented in this literature. The initial signal is decomposed by Modet continuous wavelet transformation at first. Consequently, the wavelet coeflficients obtained at the first step are analyzed by Fast Fourier Transformation (FFT) to locate the out-ring faulty frequency. In the last step power spectrum of different signal's coeflficients is compare. The feature of the faults can be well recognized even under strong noise background. The validity of the proposed method is verified by experiments.
分 类 号:TH113[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.85.73