检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京陆军指挥学院军事训练与管理系,南京210045 [2]东南大学计算机科学与工程学院,南京210096
出 处:《东南大学学报(自然科学版)》2008年第A01期118-121,共4页Journal of Southeast University:Natural Science Edition
摘 要:为了从业务角度对网络的性能进行评价和优化,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法.该方法以网络业务为分析粒度,以与网络业务流相关的时态属性和路径属性为约束条件,对已经积累的反映网络状况的海量历史数据进行挖掘分析.在进行关联规则挖掘时,利用频繁数据项集的性质,通过引入事务标号,在求出候选频繁项集的同时也求出其支持度,避免了为求支持度而进行的扫描数据库运算,极大提高了挖掘的效率和速度.实验结果表明,进行挖掘分析的数据量越大,该方法的性能和效率就越好.In order to evaluate and optimize the network performance from the view of the network traffic, a novel network traffic analysis method called time and path restrained association rules mining (TPRAR) is proposed. This method regards the network traffic as the analysis granularity and analyzes a mass of the historical data reflecting the network status by using data mining. During the course of mining, the time attribute and the path attribute related to the network traffic are regarded as the restraint conditions and the transaction ID is used to get the support of candidate frequent itemsets too while getting candidate frequent itemsets based on the character of frequent itemsets. This avoids scanning the database to get its support and the efficiency and the speed of mining are greatly improved. Experimental results indicate that the more the data are, the better the performance and the efficiency of TPRAR are.
关 键 词:业务流设计 业务流分析 时态路径约束 关联规则挖掘
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229