检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]梧州学院数理系 [2]广西师范学院数学与计算机科学系
出 处:《广西师范学院学报(自然科学版)》2008年第4期15-17,27,共4页Journal of Guangxi Teachers Education University(Natural Science Edition)
基 金:Supported by National Natural Science Foundation of China(10771095);Guangxi Natural Science Foundation(0575052,0832107);Innovation Project of Guangxi Graduate Education(2007106030701M15);Scientific Research Foundation of Guangxi Educational Committee
摘 要:一个环R的一个元a叫做一个强零因子,假如对R中的某个非零元b,有An dement a in a ring R is caled a strong zero-divisor if either 〈 α 〉 〈 b 〉 = 0 or 〈 b 〉 〈 α 〉 = 0, for someO≠b∈R(〈x〉 is the ideal generated by x∈R). Let S(R) denote the set of strong zero-divisors of R. The strong zero-divisor graph .~Г (R) is an undirected graph with vertices S (R)^* ( = S (R) - { 0 } ), where distinct vertices a and b are adjacent if and only if either 〈 α 〉 〈 b 〉 = 0 or 〈 b 〉 〈 α 〉 = 0. In this note, we study the number of cliques of the strong zero-divlsor graph of a direct product of prime rings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30