检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Physics and Information Engineering, Henan Normal University [2]College of Physics and Electronic Engineering, Xinyang Normal University
出 处:《Chinese Physics B》2009年第2期744-748,共5页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China (Grant No 60777012);the Program for Science &Technology Innovation Talents in Universities of Henan Province of China (Grant No 2008HASTIT008) ;the Science and Technology Foundation of Henan Province, China (Grant No 082300410050)
摘 要:The equilibrium lattice parameter, heat capacity, thermal expansion coefficient and bulk modulus of Ni2MnGa Heusler alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus B and temperature T up to 800 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure and decreases with increasing temperature. The pressure dependence of heat capacity Cv and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperature of Ni2MnGa is determined from the non-equilibrium Gibbs function. Our calculated results are in excellent agreement with the experimental data.The equilibrium lattice parameter, heat capacity, thermal expansion coefficient and bulk modulus of Ni2MnGa Heusler alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus B and temperature T up to 800 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure and decreases with increasing temperature. The pressure dependence of heat capacity Cv and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperature of Ni2MnGa is determined from the non-equilibrium Gibbs function. Our calculated results are in excellent agreement with the experimental data.
关 键 词:shape memory alloy Debye temperature thermodynamic properties NI2MNGA
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.184