检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与设计》2009年第3期668-670,共3页Computer Engineering and Design
基 金:山东省自然科学基金项目(2004ZX14);聊城大学自然科学基金项目(X051033)
摘 要:在并行多处理机系统中,任务调度算法是保证整个系统性能的关键。通常用有向无环图(DAG)表示任务间的依赖关系。将粒子群算法应用于组合优化领域,构造了求解任务调度问题的离散粒子群算法。算法采用基于分组的思想对粒子进行直接编码,借鉴遗传算法的思想,将粒子个体最优及全局最优解分别采用交叉操作作用到当前粒子位置上,使粒子不断向最优位置逼近;同时在每次迭代过程中引入变异操作以提高粒子群体多样性。实验结果表明,算法在不同规模的任务调度问题中均取得了良好的效果。The task scheduling algorithm has been the key to guarantee system performance in parallel multiprocessor systems. The directed acyclic graph (DAG) is always used for presenting the dependence relationship between tasks. A new task scheduling algorithm based on discrete particle swarm optimization (DPSO) is proposed, which brings another way in solving combinatorial optimization problems. The particles are represented as a vector by using direct coding method. With the illumination of genetic algorithms, the crossover operation is applied to change current situation of each particle with the local best and the global best solutions so that the particle flies towards the optimal solution quickly, while a mutation operation is also bring forward to improve the groups' diversity during each iteration. The experimental results show that the DPSO algorithm always obtains better performance in different-scaled task scheduling problems.
关 键 词:任务调度 粒子群算法 多处理机系统 同构环境 组合优化
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222