检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与数字工程》2009年第2期28-30,34,共4页Computer & Digital Engineering
摘 要:多目标优化问题求解是当前演化计算的一个重要研究方向,而基于Pareto最优概念的遗传算法更是研究的重点,然而,遗传算法在解决多目标优化问题上的缺陷却使得其往往得不到一个令人满意的解。在对该类算法研究的基础上提出了衡量Pareto最优解集的标准,并对如何满足这个标准提出了建议。Multi- objective optimization (MOO) is an important research area of evolutionary computations in recent years, and the current research work focuses on the Pareto optimal- based MOO genetic algorithm. However, GA has a defect on MOO, which always makes a disillusionary solution. This paper put forward a standard for effective Pareto optimal set, and some suggestion on how to get it.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.52.224