检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》2009年第2期323-336,共14页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(10471006)
摘 要:针对伪可加模型,本文利用局部线性回归和边缘积分的方法提出了一种稳健的估计方法.在一些正规性条件之下,证明了估计量是存在的且是渐近正态的.为了降低估计量的计算负担,提出了一步局部M-估计量.在初始值足够好的情形下,证明了一步局部M-估计量与完全迭代的M-估计量具有相同的渐近分布.换言之,一步局部M-估计量继承了完全迭代估计量的优良性质,但却大大降低了计算负担.以上事实将通过数值模拟来给予说明.A robust estimation method of the components of quasi-additive model using local linear regression and marginal integration is studied. Robust estimators are proposed for estimating the quasi-additive components. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotic normal. Based on the robust estimation equations, one-step approximation to the fully-iterative M-estimator is introduced to reduce computational burden. The one-step estimator is shown to share the same asymptotic distribution as the fully-iterative M-estimator as long as the initial estimator is good enough. In other words, the one-step local M- estimator reduce significantly the computation cost of the fully-iterative M-estimator without deteriorating its performance. These facts are illustrated via numerical simulations.
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33