检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]集美大学理学院,厦门361021 [2]厦门大学数学科学学院,厦门361005
出 处:《数学学报(中文版)》2009年第2期343-352,共10页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金(10331020);福建省教育厅基金(JA07143);集美大学自然科学基金资助项目
摘 要:令G是一个简单连通图.设S■V(G)且|S|=2n+1,将S收缩为一个顶点后所得到的图记α_((2n+1))(G,S).若G有完美匹配,且对于V(G)的任意一个有2n+1个顶点的子集S,图α_((2n+1))(G,S)有完美匹配,则称G是一个(2n+1)-可收缩图.设S_1,S_2,…,S_(2n)是V(G)的两两不相交的子集且|S_1|=|S_2|=…=|S_(2n)|=2,将S_i (i=1,2,…,2n)分别收缩为一点所得到的图记β_(2n)(G,S_1,S_2,…,S_(2n)).若G有完美匹配,且对于V(G)的任意2n个两两不相交的子集S_1,S_2,…,S_(2n),这里|S_1|=|S_2|=…=|S_(2n)|=2,图β_(2n)(G,S_1,S_2,…,S_(2n))有完美匹配,则称G是一个2n-对可收缩图.本文得到了(2n+1)-可收缩图和2n-对可收缩图的充要条件,并讨论了2n-临界图,(2n+1)-可收缩图,2n-对可收缩图及n-可扩图间的关系.Let G be a simple connected graph. For a subset S of V(G) with |S| = 2n+1, let α(2n+1) (G, S) denote the graph obtained from G by contracting S to a single vertex. If G has a perfect matching and, for any subset S of V(G) with |S |= 2n+ 1, the graph α(2n+1)(G, S) has a perfect matching, then G is called a (2n + 1)-contractible graph. For pairwise disjoint subsets S1, S2,...,S2n of V(G) with |S1| = |S2|=…= |S2n| = 2, let β2n(G, S1, S2,..., S2n) denote the graph obtained from G by contracting each Si (i = 1, 2,..., 2n) to a single vertex respectively. If G has a perfect matching and for any pairwise disjoint subsets S1,S2,..., S2n of V(G) with |S1| = |S2|… |S2n| = 2, the graph β2n(G, S1,S2,... ,S2n) has a perfect matching, then G is called a 2npairs contractible graph. In the present paper, some simple necessary and sufficient conditions for a graph to be a (2n+ 1)-contractible graph (resp. a 2n-pairs contractible) graph are established. The relations between 2n-critical graphs, (2n + 1)-contractible graphs, 2n-pairs contractible graphs, and n-extendable graphs are investigated.
关 键 词:(2n+1)-可收缩图 2n-对可收缩图 N-可扩图 k-临界图
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.95