检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴德会[1] 赵伟[1] 黄松岭[1] 郝宽胜[1]
机构地区:[1]清华大学电机系电力系统国家重点实验室,北京100084
出 处:《仪器仪表学报》2009年第2期362-367,共6页Chinese Journal of Scientific Instrument
摘 要:提出一种改进的函数连接型神经网络(FLANN),并将其应用于传感器动态建模。首先,将单输入单输出(SISO)的传感器系统表达为动态差分方程模型;再充分考虑动态模型输出的历史值与参数之间的关系,对模型输出与参数的偏导数进行重新推导,得到了对权值参数偏导数的更高精度估计;最后,利用该模型梯度进行迭代训练,加快了网络收敛速度并提高了收敛的稳定性。实验结果表明,改进FLANN具有更快的收敛速度和更强的鲁棒性,十分适合传感器动态系统的建模。An improved functional link artificial neural networks (FLANN) is presented and applied to dynamic modeling for sensor. Firstly, the single-input single-output (SISO) sensor is expressed as a dynamic difference equation model. Secondly, the partial derivatives of the dynamic model output w. r. t its parameter are re-derived and the dependences of the past dynamic model output on the parameters are also considered. Therefore more accurate evaluations of partial derivative of the weight parameters are obtained. Lastly, through iterative training using the novel model gradient, the improved FLANN effectively accelerates the convergence rate and enhances the stability of the network. Experimental results show that the improved FLANN has higher convergence rate and stronger robustness, which is more suitable for sensor dynamic modeling.
分 类 号:TP271[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7