检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘常春[1] 杨根科[1] 孙凯[1] 陆恒云[1]
出 处:《控制理论与应用》2009年第2期133-138,共6页Control Theory & Applications
基 金:国家自然科学基金资助项目(60574063).
摘 要:针对一类带最小批量约束的计划问题,提出了基于拉格朗日松弛策略求解算法.通过拉格明日松弛策略,将原问题转为一系列带最小批量约束的动态经济批量W-W(Wagner-Whitin)子问题.提出了解决子问题且其时间复杂度O(T^3)的最优前向递推算法.对于拉格朗日对偶问题,用次梯度算法求解,获得原问题的下界.若对偶问题的解是不可行的,通过固定装设变量,求解一个剩余的线性规划问题来进行可行化处理.最后,数据仿真验证了算法的有效性.A Lagrange relaxation heuristic-based procedure is presented to solve the capacitated lot-size problem(CLSP) with minimum lot-size constraint. The problem is first decomposed into a series of sub-problems W-W(Wagner-Whitin) with dynamic economic minimum lot-size constraint. To deal with the sub-problems, an optimal forward iterative algorithm with runtime complexity of O(T^3) is proposed. The Lagrange dual problem is then handled by the sub-gradient optimization algorithm to obtain a tight lower bound. If the solution to the Lagrange dual problem is infeasible, the setup variables are fixed and the remaining problem is reformulated as a linear programming problem which can be solved efficiently by any off-the-shelf solver. Finally, the computational experiments demonstrate the algorithm's efficiency.
关 键 词:计划问题 最小批量约束 拉格朗日松弛 次梯度算法
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185