检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]China Institute of Atomic Energy, PO Box 275(18), Beijing 102413 [2]Communication University of China,Beijing 100024 [3]Center of Theoretical Nuclear Physics, National Laboratory of Heavy Collision, Lanzhou 730000 [4]Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
出 处:《Chinese Physics Letters》2009年第2期73-76,共4页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant Nos 10875150, 10775183 and 10535010, and the National Basic Research Programme of China Under Grant No 2007CB815000.
摘 要:The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energyweighted sum rule m-1 and the centroid energy of the ISGMR in ^120Sn and ^208Pb are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energyweighted sum rule m-1 and the centroid energy of the ISGMR in ^120Sn and ^208Pb are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
关 键 词:field emission molybdenum dioxide enhancement factor
分 类 号:O571.6[理学—粒子物理与原子核物理] TM271.6[理学—物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15