检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李亚云[1,2] 杨秀春[3] 朱晓华[1] 徐斌[3]
机构地区:[1]中国科学院地理科学与资源研究所,北京100101 [2]中国科学院研究生院,北京100049 [3]中国农业科学院农业资源与农业区划研究所,北京100081
出 处:《地理科学进展》2009年第1期55-62,共8页Progress in Geography
基 金:国家自然科学基金项目(40701055)
摘 要:土地荒漠化已成为一个全球性的重大环境问题,也是我国面临的严重生态环境问题。遥感技术以其信息量大、获取速度快、覆盖范围广、受人力物力的限制小等优点,在过去的30多年中,已逐渐成为土地荒漠化监测的重要数据来源和技术手段。本文首先概述了土地荒漠化遥感监测中使用的遥感数据源,综述了各类卫星遥感影像、影像的不同季相、波段和各类植被指数的选择等;讨论了土地荒漠化信息遥感提取的多种方法,综合比较不同遥感提取方法的优缺点,进而分析土地荒漠化遥感监测中多采用计算机自动分类与人工手动分类结合的原因。最后,指出遥感技术在土地荒漠化监测中存在的一些问题,并提出土地荒漠化遥感监测中综合指标与综合方法集成研究等发展方向。Land desertification has been a worldwide environmental problem. It is also a serious eco-environmental problem in China. Because of the advantage of large amount of information, short cycle and broad scope of data, less restrictions on the human and material resources and so on, remote sensing has become an important technology to monitor land desertification in the past 30 years. Firstly, we summarize the research progress in monitoring land desertification using remote sensing data, including different satellite remote sensing imageries, how to choose the time and bands of the imageries and how to choose the vegetation indexes. Then, we discuss about the methods to extract information of land desertification from remote sensing imageries, which ineludes artificial visual interpretation, supervised classification, unsupervised classifcation, hierarchical decision tree classification and neural network classification. Also we comprehensively compare the strength and weaknesses of each method. Furthermore, we analyze the reasons why both computer automatic classification and artificial classification are widely used in monitoring land desertification. We identify the problems in the remote sensing technology application to land desertification monitoring. Finally, we put forward the development prospects in the application of remote sensing to monitoring land desertification, such as the integration of aggregative indicators and methods and so on.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117