检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学电气与电子工程学院,北京102206
出 处:《电工技术学报》2009年第2期139-144,共6页Transactions of China Electrotechnical Society
摘 要:电流控制电流源(CCCS)存在不同支路电流之间的控制行为,给该类网络节点阻抗矩阵的形成带来困难。本文对含有CCCS的电力网络中节点注入电流、节点电压、支路电流与支路电压四类电气量之间的约束关系进行深入分析,分别定义了三个过渡矩阵:支路电流对节点注入电流矩阵MIJ、节点电压对支路电压矩阵MVU和节点电压对支路电流矩阵MVI,并给出了各自的求取过程。利用这三个矩阵的运算结果并结合kron法,推导了一种能很好地适于含CCCS的大规模电网形成节点阻抗矩阵的新算法。文中结合7节点系统给出了算法的主体流程,并通过大量的算例系统进行了验证分析,计算结果证明了所提算法的有效性。该方法为利用节点阻抗矩阵开展进一步研究工作提供了一个新的支持工具。The current of current-controlled current source (CCCS) branch is controlled by the current of another branch, which makes it difficult to build the node impedances matrix (Z-matrix). To solve this problem, a novel algorithm for building Z-matrix is put forward. The relationships between the current injection, node voltage, branch current and branch voltage are lucubrated to in this paper. Three transitional matrices are introduced: branch current vs. current injection matrix MIJ, node voltage vs. branch voltage matrix MVU and node voltage vs. branch current matrix MVI. These three matrices cooperating to the kron reduction methods made it to build Z-matrix. This algorithm can easily deal with large networks containing CCCS branches. The main structure of the algorithm is illustrated with the help of a 7-bus system and is validated by several IEEE testing systems. The results show that this algorithm is effective. So it will be a new sustaining tool for further research by using Z-matrix.
关 键 词:电力系统 电流控制电流源 节点阻抗矩阵 递归算法 过渡矩阵
分 类 号:TM744[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.23.205