Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus  被引量:9

Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus

在线阅读下载全文

作  者:苏振鹏 郑惠南 熊明 

机构地区:[1]CAS Key Lab for Basic Plasma Science, School of Earth and Space Sciences, University of Science and Technology of

出  处:《Chinese Physics Letters》2009年第3期313-316,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 40774077, 40774078 and 40774079, and the National Basic Research Programme of China under Crant No 2006CB806304.

摘  要:Following our preceding work, we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L=4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum. We solve the 2D bounce-averaged Fokker-Planek equation by allowing incorporation of cross diffusion rates. Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles, and enhance the phase space density for energies of about 1 MeV by a factor of 10^2 or above in about one day, consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm. Moreover, neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day, with larger errors at smaller pitch angle, suggesting that cross diffusion also plays an important role in wave-particle interaction.Following our preceding work, we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L=4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum. We solve the 2D bounce-averaged Fokker-Planek equation by allowing incorporation of cross diffusion rates. Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles, and enhance the phase space density for energies of about 1 MeV by a factor of 10^2 or above in about one day, consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm. Moreover, neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day, with larger errors at smaller pitch angle, suggesting that cross diffusion also plays an important role in wave-particle interaction.

分 类 号:O441.4[理学—电磁学] P182.52[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象