检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学航天与材料工程学院,长沙410073
出 处:《计算力学学报》2009年第1期8-14,共7页Chinese Journal of Computational Mechanics
基 金:973国家重大基础研究(5132403010103)资助项目
摘 要:尽管已有许多文献采用数值模拟方法研究两相流问题,但主要是集中不可压流动方面。本文采用Eul-er-Lagrange颗粒-轨道双向耦合模型对时间模式下含有固粒的二维可压缩混合层流动进行了研究。气相流场采用非定常全Navier-Stokes方程描述,并应用具有空间三阶精度的WNND(Weighted Non-Oscillatory,Contai-ning No Free Parameters and Dissipative)格式进行数值离散。固相方程采用二阶单边三点差分离散。在考虑流场对固粒作用的同时,也计及颗粒对流场的反作用。主要研究混合层大尺度涡对颗粒扩散特性的影响及颗粒对流场结构的影响问题。在对流马赫数为0.5时,研究不同Stokes数颗粒在连续流场中的扩散特性,而在对流马赫数为0.8时研究了不同Stokes数颗粒对流场小激波结构的影响。Although there have been many numerical studies on particle dispersion in mixing layers, most of them have been conducted for incompressible mixing layers. In this study, numerical simulations of a temporally developing compressible mixing layer are performed to investigate particle dispersion under different convective math number. The particles are traced using a Lagrangian approach assuming twoway coupling between the continuous and the dispersed phases. Not only the action of gas-field to particles but also the reaction of particles to gas-field is considered. The full compressible Navier-Stokes equations are solved with a high-order finite difference WNND (Weighted Non-Oscillatory, containing No free parameters and Dissipative) scheme, and the equations of particles are discretized by biased threepoint difference. The study focuses on the roles of the large-scale vortex structures in particle dispersion at low, medium and high Stokes numbers and the influence of particle on the flow field structure. At the convective Math number 0. 5, the influence of different Stokes number on the dispersion of particles is investigated. At the convective Mach number 0.8, the influence of particles to the shocklet structure in mixing layers is also investigated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188