Derivations of the Even Part of the Odd Hamiltonian Superalgebra in Modular Case  被引量:14

Derivations of the Even Part of the Odd Hamiltonian Superalgebra in Modular Case

在线阅读下载全文

作  者:Wen De LIU Xiu Ying HUA Yu Cai SU 

机构地区:[1]School of Mathematical Sciences, Harbin Normal University, Harbin 150025, P. R. China [2]Department of Applied Mathematics, Harbin University of Science and Technology, Harbin 150080, P. R. China [3]Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第3期355-378,共24页数学学报(英文版)

基  金:Supported by NsF of China (10671160, 10871057), NSF (A200802); PDSF of Heilongjiang Province, China I Supported by NSF of China (10825101);"One Hundred Talents Program" from USTC

摘  要:In this paper we mainly study the derivations for even part of the finite-dimensional odd Hamiltonian superalgebra HO over a field of prime characteristic. We first give the generating set of the even part g of HO. Then we compute the derivations from g into the even part m of the generalized Witt superalgebra. Finally, we determine the derivation algebra and outer derivation algebra of and the dimension formulas. In particular, the first cohomology groups H^1(g;m) and H^1(g;g) are determined.In this paper we mainly study the derivations for even part of the finite-dimensional odd Hamiltonian superalgebra HO over a field of prime characteristic. We first give the generating set of the even part g of HO. Then we compute the derivations from g into the even part m of the generalized Witt superalgebra. Finally, we determine the derivation algebra and outer derivation algebra of and the dimension formulas. In particular, the first cohomology groups H^1(g;m) and H^1(g;g) are determined.

关 键 词:canonical torus derivation space first cohomology group 

分 类 号:O172.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象