Further Results on Overlarge Sets of Kirkman Triple Systems  被引量:1

Further Results on Overlarge Sets of Kirkman Triple Systems

在线阅读下载全文

作  者:Lan Dang YUAN Qing De KANG 

机构地区:[1]College of Career Technology, Hebei Normal University, Shijiazhuang 050031, P. R. China [2]Institute of Mathematics, Hebei Normal University, Shijiazhuang 050016, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2009年第3期419-434,共16页数学学报(英文版)

基  金:supported by NSFC Grant 10671055;NSFHB A2007000230;Foundation of Hebei Normal University L2004Y11, L2007B22

摘  要:In this paper, we introduce a new concept -- overlarge sets of generalized Kirkman systems (OLGKS), research the relation between it and OLKTS, and obtain some new results for OLKTS. The main conclusion is: If there exist both an OLKF(6^k) and a 3-OLGKS(6^k-1,4) for all k ∈{6,7,...,40}/{8,17,21,22,25,26}, then there exists an OLKTS(v) for any v ≡ 3 (mod 6), v ≠ 21. As well, we obtain the following result: There exists an OLKTS(6u + 3) for u = 2^2n-1 - 1, 7^n, 31^n, 127^n, 4^r25^s, where n ≥ 1,r+s≥ 1.In this paper, we introduce a new concept -- overlarge sets of generalized Kirkman systems (OLGKS), research the relation between it and OLKTS, and obtain some new results for OLKTS. The main conclusion is: If there exist both an OLKF(6^k) and a 3-OLGKS(6^k-1,4) for all k ∈{6,7,...,40}/{8,17,21,22,25,26}, then there exists an OLKTS(v) for any v ≡ 3 (mod 6), v ≠ 21. As well, we obtain the following result: There exists an OLKTS(6u + 3) for u = 2^2n-1 - 1, 7^n, 31^n, 127^n, 4^r25^s, where n ≥ 1,r+s≥ 1.

关 键 词:Kirkman frame Kirkman triple system overlarge set (2 1)-resolvable Steiner quadruplesystem 

分 类 号:O157.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象