Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs  被引量:12

利用成像测井自动判别礁滩储层沉积相和岩性(英文)

在线阅读下载全文

作  者:柴华[1,2] 李宁[2,3] 肖承文[4] 刘兴礼[4] 李多丽[4] 王才志[2] 吴大成[4] 

机构地区:[1]北京大学地球与空间科学学院,北京100871 [2]中国石油勘探开发研究院,北京100083 [3]长江大学,湖北荆州434023 [4]中国石油塔里木油田分公司勘探开发研究院,库尔勒841000

出  处:《Applied Geophysics》2009年第1期17-29,102,共14页应用地球物理(英文版)

基  金:sponsored by the National S&T Major Special Project(No.2008ZX05020-01)

摘  要:Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.礁滩储层是我国海相碳酸盐岩油气勘探的重要目标,也是我国油气产能的重要接替领域之一。由于礁滩储层储集空间类型多样,非均质性极强,依靠常规测井判别其沉积相和岩性非常困难。成像测井能够清晰地反映礁滩储层的结构组分和沉积构造,为沉积相和岩性的判别提供了可靠的依据。在对大量礁滩储层的成像和岩心对比观察的基础上,我们提出了9种典型的成像解释模式,建立了利用成像解释模式自动判别礁滩储层沉积相和岩性的方法并研制了相应的处理软件。该方法在塔中和川东北地区礁滩储层的实际应用中取得了良好的效果。

关 键 词:Reef-bank reservoirs sedimentary facies lithology borehole image logs pattern recognition 

分 类 号:P631.81[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象