运用分段法反演太湖水体的叶绿素a浓度  被引量:2

Chlorophyll-a Retrieval by Concentration Classification in Taihu Lake Based on Remote Sensing

在线阅读下载全文

作  者:杜聪[1] 王世新[1] 周艺[1] 阎福礼[1] 

机构地区:[1]中国科学院遥感应用研究所,北京100101

出  处:《遥感信息》2009年第1期41-48,共8页Remote Sensing Information

基  金:863计划(2006AA06Z419);国家自然科学基金项目(40671141和40701126)

摘  要:为了提高太湖水体叶绿素a浓度的反演精度,本文采用了浓度分段法,将采样点按其浓度分成两类后分别建立统计模型,并在相关性较低的低浓度模型中采用了光谱修正因子OSS/TSS进行混合光谱分解。最后的验证结果显示,利用浓度分段模型估测叶绿素a浓度的均方根误差(RMSE)为21.12μg/L,R2=0.92;而利用传统经验模型的估测精度为RMSE=35.72μg/L,R2=0.72。表明浓度分段法可以有效地提高内陆富营养化水体的叶绿素反演精度。In this paper, concentration classification was used to improve the accuracy of remote sensing chlorophyll-a retrieval. The samples were classified into two groups, the high concentration and the low concentration, according to its chlorophyll-a concentration (Chl) by the threshold of 50 μg/L. A modifying factor OSS/TSS was also used to increase the correlations between spectra and Chl in the low concentration model. The result shows the concentration classification models allowed estimation of Chl with a RMSE of 21.12 μg/L, whereas the classical statistical experience model allowed the RMSE of Chl estimation was above 35. 0μg/L. It demonstrated the fitness and robustness of this method for Chl retrieval in turbid, productive waters, like Taihu Lake.

关 键 词:叶绿素 浓度分段 混合光谱分解 OSS/TSS 太湖 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象