检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]滁州学院电子信息工程系,安徽滁州239012 [2]安徽大学计算机学院,安徽合肥230039 [3]滁州学院计算机系,安徽滁州239012
出 处:《计算机工程与设计》2009年第5期1201-1203,1206,共4页Computer Engineering and Design
基 金:安徽省自然科学基金项目(O50420204);安徽高校省级自然科学研究基金项目(KJ2008B117)。
摘 要:目前求核算法存在以下不足:求得的核与基于正区域的核不一致、算法的时间和空间复杂度不理想。针对上述问题,提出一种简化的可分辨矩阵的定义和求核方法,并证明了由该方法获得的核与基于正区域的核是等价的。为了提高算法效率,采用分布计数的基数排序思想设计等价类U/C划分算法,其时间复杂度为O(│C││U)。在此基础上,给出快速求核算法,其时间和空间复杂度分别降为max{O(│C││U/C│2,O(C││U)}和O(│C││U/C│2)。最后,实例说明了算法的有效性。At present, the algorithms for computing core have the following shortcomings: the core acquired from these algorithms is not the core based on positive region. The time complexity and space complexity of these algorithms are not good. Aiming at these problems, firstly a definition of simple dicernibility matrix and the method of computing core are provided. It is proved that the core is equivalent to the core based on positive region. In order to improve the efficiency of the algorithm, an efficient algorithm for computing U/C is designed with the idea of radix sorting based on distributing counting. It' s time complexity is O(| C| |U|). On this condition, a quick computing core algorithm is put forward. Its time complexity and space complexity are cut down max{O(│C││U/C│^2,O(C││U)} and O(│C││U/C│^2) .Finally, an example is used to explained the efficiency of the algorithm.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222