Scaling in Rate-Changeable Birth and Death Processes with Random Removals  

Scaling in Rate-Changeable Birth and Death Processes with Random Removals

在线阅读下载全文

作  者:KE Jian-Hong LIN Zhen-Quan CHEN Xiao-Shuang 

机构地区:[1]School of Physics and Electronic Information, Wenzhou University, Wenzhou 325035, China [2]National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

出  处:《Communications in Theoretical Physics》2009年第1期165-169,共5页理论物理通讯(英文版)

基  金:supported by National Natural Science Foundation of China under Grant Nos. 10775104 and 10305009

摘  要:We propose a monomer birth-death model with random removals, in which an aggregate of size k can produce a new monomer at a time-dependent rate I(t)k or lose one monomer at a rate J(t)k, and with a probability P(t) an aggregate of any size is randomly removed. We then anedytically investigate the kinetic evolution of the model by means of the rate equation. The results show that the scaling behavior of the aggregate size distribution is dependent crucially on the net birth rate I(t) - J(t) as well as the birth rate I(t). The aggregate size distribution can approach a standard or modified scaling form in some cases, but it may take a scale-free form in other cases. Moreover, the species can survive finally only if either I(t) - J(t) ≥ P(t) or [J(t) + P(t) - I(t)]t ≈ 0 at t ≥ 1; otherwise, it will become extinct.

关 键 词:kinetic behavior birth/death rate changeable scaling law 

分 类 号:O211.62[理学—概率论与数理统计] TQ051.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象