检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机与信息技术系,上海200433 [2]宁波大学信息科学与工程学院,宁波315211
出 处:《模式识别与人工智能》2009年第1期113-122,共10页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.60773072);浙江省自然科学基金项目(No.Y104144);浙江省教育厅项目(No.20051737)资助
摘 要:利用数据流的遗忘特性,应用随机投影,分层、动态地维护每个数据流的概要结构.基于该概要结构,快速计算数据流和聚类中心之间的近似距离,实现一种适合并行多数据流的K-means聚类方法.所进行的实验验证该方法的有效性.A synopsis is maintained dynamically for each data stream. The construction of the synopsis is based on random projections and it utilizes the amnesic feature of data stream. Using the synopsis, the approximate distances between streams and the cluster center can be computed fast. And an efficient online version of the classical K-means clustering algorithm is developed. The experimental results showy the method can be performed effectively with a good clustering quality.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.73.0