A NON-TRIVIAL PRODUCT OF FILTRATION s+6 IN THE STABLE HOMOTOPY GROUPS OF SPHERES  被引量:4

A NON-TRIVIAL PRODUCT OF FILTRATION s+6 IN THE STABLE HOMOTOPY GROUPS OF SPHERES

在线阅读下载全文

作  者:赵浩 刘秀贵 金应龙 

机构地区:[1]School of Mathematical Sciences,Nankai University [2]School of Mathematical Sciences and LPMC,Nankai University [3]Department of Mathematics,Tianjin University

出  处:《Acta Mathematica Scientia》2009年第2期276-284,共9页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China (10501045, 10771105);the NCET and the Fund of the Personnel Division of Nankai University.

摘  要:By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].

关 键 词:Stable homotopy groups of spheres Adams spectral sequence May spectral sequence 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象