A FAST CONVERGENT METHOD OF ITERATED REGULARIZATION  

A FAST CONVERGENT METHOD OF ITERATED REGULARIZATION

在线阅读下载全文

作  者:黄小为 吴传生 吴笛 

机构地区:[1]School of Sciences,Wuhan University of Technology [2]College of Arts and Science,Yangtze University

出  处:《Acta Mathematica Scientia》2009年第2期341-348,共8页数学物理学报(B辑英文版)

摘  要:This article presents a fast convergent method of iterated regularization based on the idea of Landweber iterated regularization, and a method for a-posteriori choice by the Morozov discrepancy principle and the optimum asymptotic convergence order of the regularized solution is obtained. Numerical test shows that the method of iterated regularization can quicken the convergence speed and reduce the calculation burden efficiently.This article presents a fast convergent method of iterated regularization based on the idea of Landweber iterated regularization, and a method for a-posteriori choice by the Morozov discrepancy principle and the optimum asymptotic convergence order of the regularized solution is obtained. Numerical test shows that the method of iterated regularization can quicken the convergence speed and reduce the calculation burden efficiently.

关 键 词:Ill-posed problems iterated regularization Morozov discrepancy principle 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象