An Inequality of Bohr Type on Hardy-Sobolev Classes  

An Inequality of Bohr Type on Hardy-Sobolev Classes

在线阅读下载全文

作  者:LI Xue Hua 

机构地区:[1]College of Science, China Agricultural University, Beijing 100083, China

出  处:《Journal of Mathematical Research and Exposition》2009年第2期213-218,共6页数学研究与评论(英文版)

基  金:the National Natural Science Special-Purpose Foundation of China (No. 10826079); the National Natural Science Foundation of China (No. 10671019); the Initial Research Fund of China Agricultural University (No. 2006061).

摘  要:Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies4∧β/π∧′=1/σ.The constant in the above inequality is exact.Let β > 0 and Sβ := {z ∈ C : |Imz| < β} be a strip in the complex plane. For an integer r ≥ 0, let H∞r,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f(r)(z)| ≤ 1, z ∈ Sβ. For σ > 0, denote by Bσ the class of functions f which have spectra in (2πσ,2πσ). And let Bσ⊥ be the class of functions f which have no spectrum in (2πσ,2πσ). We prove an inequality of Bohr type f ∞≤√πλΛσr∞ k=0 (1)k(r+1) (2k + 1)r sinh((2k + 1)2σβ) , f ∈ H∞r,β∩ Bσ⊥ , where λ∈ (0,1), Λ and Λ are the complete elliptic integrals of the first kind for the moduli λ and λ = √1 λ2, respectively, and λ satisfies 4ΛβπΛ = σ1. The constant in the above inequality is exact.

关 键 词:Hardy-Sobolev classes the spectrum of a function an inequality of Bohr type. 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象