检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Xue Hua
机构地区:[1]College of Science, China Agricultural University, Beijing 100083, China
出 处:《Journal of Mathematical Research and Exposition》2009年第2期213-218,共6页数学研究与评论(英文版)
基 金:the National Natural Science Special-Purpose Foundation of China (No. 10826079); the National Natural Science Foundation of China (No. 10671019); the Initial Research Fund of China Agricultural University (No. 2006061).
摘 要:Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies4∧β/π∧′=1/σ.The constant in the above inequality is exact.Let β > 0 and Sβ := {z ∈ C : |Imz| < β} be a strip in the complex plane. For an integer r ≥ 0, let H∞r,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f(r)(z)| ≤ 1, z ∈ Sβ. For σ > 0, denote by Bσ the class of functions f which have spectra in (2πσ,2πσ). And let Bσ⊥ be the class of functions f which have no spectrum in (2πσ,2πσ). We prove an inequality of Bohr type f ∞≤√πλΛσr∞ k=0 (1)k(r+1) (2k + 1)r sinh((2k + 1)2σβ) , f ∈ H∞r,β∩ Bσ⊥ , where λ∈ (0,1), Λ and Λ are the complete elliptic integrals of the first kind for the moduli λ and λ = √1 λ2, respectively, and λ satisfies 4ΛβπΛ = σ1. The constant in the above inequality is exact.
关 键 词:Hardy-Sobolev classes the spectrum of a function an inequality of Bohr type.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.18.107.160