On a Class of Weakly-Berwald (α,β)-Metrics  被引量:1

On a Class of Weakly-Berwald (α,β)-Metrics

在线阅读下载全文

作  者:XIANG Chun Huan CHENG Xin Yue 

机构地区:[1]School of Mathematics and Statistics, Chongqing University of Arts and Sciences, Chongqing 402160, China [2]School of Mathematics and Physics, Chongqing Institute of Technology, Chongqing 400050, China

出  处:《Journal of Mathematical Research and Exposition》2009年第2期227-236,共10页数学研究与评论(英文版)

基  金:the National Natural Science Foundation of China (No. 10671214); the Natural Science Foundation of Chongqing Education Committee (No. KJ080620); the Science Foundation of Chongqing University of Arts and Sciences (No. Z2008SJ14).

摘  要:In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.In this paper, we study an important class of (α,β)-metrics in the form F = (α+β)^m+1/α^m on an n-dimensional manifold and get the conditions for such metrics to be weakly- Berwald metrics, where α = √aij(x)y^iy^j is a Riemannian metric and β = bi(x)y^i is a 1-form and m is a real number with m ≠ -1,0,-1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.

关 键 词:mean Berwald curvature weakly-Berwald metric S-CURVATURE (α β)-metric. 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象