Improved Local Wellposedness of Cauchy Problem for Generalized KdV-BO Equation  

Improved Local Wellposedness of Cauchy Problem for Generalized KdV-BO Equation

在线阅读下载全文

作  者:ZHAO Xiang Qing GUO Ai 

机构地区:[1]Department of Mathematics, Zhejiang Ocean University, Zhejiang 316000, China [2]School of Mathematical Sciences, South China University of Technology, Guangdong 510640, China

出  处:《Journal of Mathematical Research and Exposition》2009年第2期371-375,共5页数学研究与评论(英文版)

基  金:the Natural Science Foundation of Zhejiang Province (No. Y6080388); the Science and Technology Research Foundation of Zhejiang Ocean University (Nos. X08M014; X08Z04).

摘  要:In this paper we prove that the Cauchy problem associated with the generalized KdV-BO equation ut + uxxx + λH(uxx) + u^2ux = 0, x ∈ R, t ≥ 0 is locally wellposed in Hr^s(R) for 4/3 〈r≤2, b〉1/r and s≥s(r)= 1/2- 1/2r. In particular, for r = 2, we reobtain the result in [3].In this paper we prove that the Cauchy problem associated with the generalized KdV-BO equation ut + uxxx + λH(uxx) + u2ux = 0, x ∈ R, t ≥ 0 is locally wellposed in Hrs(R) for 34 < r ≤ 2, b > r1 and s ≥ s(r) = 21 21r. In particular, for r = 2, we reobtain the result in [3].

关 键 词:KdV-BO equation Cauchy problem local wellposedness. 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象