检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学电力系统保护与动态安全监控教育部重点实验室,河北保定071003
出 处:《电力科学与工程》2009年第3期22-27,共6页Electric Power Science and Engineering
摘 要:电力系统负荷经济分配(ED)是一个高维、非凸、非线性问题,其求解过程比较复杂。对粒子群优化(PSO)算法进行改进,在目标函数中加入惩罚项来满足火电机组的约束条件,引入非线性权值递减略和惩罚因子的动态改进,并结合遗传算法(GA)中变异的思想,用来解决负荷经济分配的问题。将该方法的可行性在10台机组系统中多次检验,模拟结果表明文章所改进PSO算法具有良好的收敛性和鲁棒性。Solving Economic Dispatch (ED) of power load is quite difficult problem due to its high-dimensional, non-convex, nonlinear characteristic. In this paper, PSO was improved as follows: combining with genetic algorithm (GA) mutation, penalty function was adopt to the objective function in order to meet the constraints; non-linear decreasing weight and penalty factors dynamic modification were introduced to solve load economic dispatch problem. The feasibility of the method was tested in the system with 10 units repeatedly. The results showed that the modified PSO algorithm has good performances of convergence and robustness.
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3