机构地区:[1]School of Applied Sciences,Harbin University of Science and Technology [2]Mechanical Engineering Center for Post-doctoral Studies,Harbin Engineering University [3]School of Measurement Control Tech & Communications Engineering,Harbin University of Science and Technology
出 处:《Journal of Semiconductors》2009年第3期83-86,共4页半导体学报(英文版)
基 金:supported by the National Natural Science Foundation of China (No. 60772019);the National High Technology Research andDevelopment Program of China (No. 2006AA040101-05);the National Science Foundation for Post-doctoral Scientists of China (No.20080440839).
摘 要:Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 × 10^-6 in Cl2 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to Cl2 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 × 10^-6 with the sensitivity of 2.2, and the upper limit concentration of 500 × 10^-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.Aiming at detecting Cl2 gas, this study was made on how to make In-based compound semiconductor oxide gas sensor. The micro-property and sensitivity of In-based gas sensing material were analyzed and its gas sensitive mechanism was also discussed. Adopting constant temperature chemical coprecipitation, the compound oxides such as In-Nb, In-Cd and In-Mg were synthesized, respectively. The products were sintered at 600 ℃ and characterized by the Scanning Electron Microscope (SEM), showing the grain size almost about 50-60 nm. The test results show that the sensitivities of In-Nb, In-Cd and In-Mg materials under the concentration of 50 × 10^-6 in Cl2 gas are above 100 times, 4 times and 10 times, respectively. The response time of In-Nb, In-Cd and In-Mg materials is about 30, 60 and 30 s, and the recovery time less than 2, 10 and 2 min, respectively. Among them, the In-Nb material was found to have a relatively high conductivity and ideal sensitivity to Cl2 gas, which showed rather good selectivity and stability, and could detect the minimum concentration of 0.5 × 10^-6 with the sensitivity of 2.2, and the upper limit concentration of 500 × 10^-6. The power loss of the device is around 220 mW under the heating voltage of 3 V.
关 键 词:IN2O3 Nb2O5 sensitive property chlorine gas sensor
分 类 号:TN304[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...