检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁小坊[1,2] 陈楠楠[1] 王东[1] 谢高岗[2] 张大方[1]
机构地区:[1]湖南大学计算机与通信学院,长沙410082 [2]中国科学院计算技术研究所下一代互联网研究中心,北京100190
出 处:《计算机研究与发展》2009年第3期434-442,共9页Journal of Computer Research and Development
基 金:国家“九七三”重点基础研究发展计划基金项目(2007CB310702);国家自然科学基金网络与信息安全重大专项基金项目(90604015);中国科学院重大科研装备研制项目(YZ200824)~~
摘 要:Internet流量是具有复杂非线性组合特征的季节性时间序列.目前国内外的网络流量预测研究主要集中在网络层和传输层,仅采用单一的ARMA(n,n-1)模型来描述网络的整体流量趋势,但该模型无法描述应用层流量的季节特性.因此提出基于应用层的流量预测分析模型,对国内某城域网出口链路上的应用层流量序列采用ARIMA季节乘积混合模型(p,d,q)(P,D,Q)s建模并预测.实验结果表明,在同一个城域网中不同的应用层流量表现出不同的行为特征,经ARIMA季节乘积混合模型(p,d,q)(P,D,Q)s预测的应用层流量趋势与实际曲线基本相似,平均绝对百分比误差在10%左右.Complexity and diversity of Internet traffic are constantly growing. Networking researchers become aware of the need to constantly monitor and reevaluate their assumptions in order to ensure that the conceptual models correctly represent reality. Internet traffic today is a complex nonlinear combination of the seasonal time series. The current network traffic measurement research is mainly concentrated on the flow forecasts and analysis based on network layer or transport layer. However, a single ARMA (n, n-1) model is used, which can only describe the overall network traffic trends, while different traffics based on the application layer aren't always consistent with ARMA (n, n-1) model. Presented in this paper are traffic prediction models based on application layer, which use ARIMA seasonal multiple model (p, d, q)(P, D, Q)s for modeling and forecasting the seasonal time series from China's exports of a metro area network link. Experimental results show that different application layer traffics perform different traffic behavior characteristics, and with the establishment of different application-layer flow prediction models, forecasting trends are very similar with the actual flow curves, and mean absolute percentage errors are around 10%. The authors firstly presents ARIMA seasonal multiple model as traffic prediction models based on application layer.
关 键 词:城域网 应用层流量 时间序列 ARIMA季节乘积混合模型 流量预测
分 类 号:TP393.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.241.170