检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]黑龙江科技学院计算机与信息工程学院,哈尔滨150027
出 处:《科学技术与工程》2009年第6期1387-1392,1396,共7页Science Technology and Engineering
基 金:国家自然科学基金(60374026);黑龙江科技学院引进人才启动基金项目(07-47)资助
摘 要:对于带多传感器的广义线性离散随机系统,应用奇异值分解,并通过对观测方程的状态变换,将带有色观测噪声的系统变换为等价的带相关噪声的两个降阶多传感器子系统。应用Kalman滤波方法,在线性最小方差按块对角阵加权融合准则下,提出了按矩阵加权融合降阶广义Kalman滤波器,可减少计算负担和改善局部滤波精度。为了计算最优加权,给出了局部滤波误差协方差阵的计算公式,证明了融合器和局部滤波器之间的精度关系。一个MonteCarlo仿真例子说明了其有效性。For the linear discrete stochastic descriptor systems with multisensor, using the singular value decomposition, by means of a linear transformation of the observation equation, the system with coloured observation noises is converted into two equivalent reduced-order subsystems with correlated noises. Based on Kalman filtering method, fusion reduced-order descriptor Kalman filters weighted by matrices is proposed under the linear least variance optimal fusion criterion by block-diagonal matrices. The computational burden can reduce, and can improve the local filtering accuracy. In order to compute the optimal weights, the formulas of computing the cross-covariantes matrices among local filtering errors are presented. The accuracy relations among fusers and local filters are proved. A Monte Carlo simulation example shows its effectiveness.
关 键 词:广义系统 多传感器信息融合 最优加权融合 奇异值分解 Kalman滤波方法
分 类 号:O211.64[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3