检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子工程与信息科学系,合肥230027
出 处:《计算机工程》2009年第6期210-212,共3页Computer Engineering
基 金:多媒体计算与通信教育部微软重点实验室开放基金资助项目(06120809)
摘 要:根据聚类假设,提出一种新的基于图的半监督学习算法,称为密度敏感的半监督聚类。该算法引入一种密度敏感的距离测度,它能较好地反映聚类假设,并且充分挖掘了数据集中复杂的内在结构信息,同时与基于图的半监督学习方法相结合,使得算法在聚类性能上有了显著的提高。经过实验仿真进一步表明,该算法在特定图像应用上具有优越性。Based on clustering assumption, this paper proposes a novel semi-supervised learning algorithm based on graph, named Density- sensitive Semi-supervised Clustering(DS-SC). The approach introduces a density-sensitive distance measure which reflects the clustering assumption well and fully exploits the competitive inherent structure information among dataset, and combining it with a graph-based semi-supervised learning methods leads to prominent clustering performance enhance of DS-SC. The results demonstrate the superiority of DS-SC in the application of a specific image in the further simulation.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70