机构地区:[1]Key Laboratory of Polar Materials and Devices of Ministry of Education, and Department of Electronic Engineering, East China Normal University, Shanghai 200241 [2]National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093
出 处:《Chinese Physics Letters》2009年第4期119-121,共3页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant No 50672027 and the Shanghai Fundamental Key Project under Grant No 08JC1408900.
摘 要:With the aid of photolithography, an array of one-dimensional porous silicon photonic crystai reflector islands for a far infrared image detector ranging from 10 μm to 14 μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-pattern. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the iliterconnection of each pixel.With the aid of photolithography, an array of one-dimensional porous silicon photonic crystai reflector islands for a far infrared image detector ranging from 10 μm to 14 μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-pattern. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the iliterconnection of each pixel.
分 类 号:O734[理学—晶体学] TN304.12[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...