低信噪比下的LMS自适应无偏时延估计  被引量:11

Bias-Free LMS Time Delay Estimation at Low Signal-to-Noise Ratio Levels

在线阅读下载全文

作  者:吴慧娟[1] 文玉梅[1] 李平[1] 

机构地区:[1]重庆大学光电工程学院,光电技术及系统教育部重点实验室,重庆400044

出  处:《电子学报》2009年第3期500-505,共6页Acta Electronica Sinica

基  金:国家自然科学基金(No.60804061)

摘  要:比较性研究了最小均方(LMS)时延估计器中有偏与无偏估计算法的时延估计性能,并基于Treichler的γ-LMS算法提出了一种改进的无偏估计方法.利用自适应滤波器中最佳逼近原理的几何解释来估计输入噪声的功率,迭代过程中逐步去除输入噪声的影响,使得最优维纳解的真实峰值得到增强,在低信噪比或复杂噪声环境下显著改善了自适应时延估计性能.该方法无需假设输入与输出噪声功率相等或功率比已知、有用信号应为白过程等限制条件,因此具有广泛的应用价值.仿真与实际数据处理都验证了该方法的有效性.The performances of least mean square (LMS) time delay estimator (TDE) are analyzed using biased and unbiased estimation methods. Then a modified LMS method based on Treichler' s γ-LMS algorithm is developed for unbiased estimation in the presence of white input and output noises,in which the input noise variance is simply obtained by the Euclidean geometric interpretation of the best approximation in adaptive filters without any a priori knowledge of the interference. With this estimated variance,the proposed bias-free LMS-TDE can iteratively eliminate the input noise effects and actually enhance the true peak,thus it can reduce the probability of anomalous peak in noisy environments at lower signal-to-noise ratio (SNR) levels. It gets rid of the assumptions that the input and output noise powers am the same or their ratio is known, or the signals am all white processes. Simulations and real data application are both provided to validate its effectiveness.

关 键 词:无偏时延估计 最小均方自适应算法 性能评估 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象