Recovery of valuable metals from anode material of hydrogen-nickel battery  被引量:5

Recovery of valuable metals from anode material of hydrogen-nickel battery

在线阅读下载全文

作  者:吴芳 徐盛明 李林艳 陈崧哲 徐刚 徐景明 

机构地区:[1]Institute of Nuclear and New Energy Technology,Tsinghua University

出  处:《中国有色金属学会会刊:英文版》2009年第2期468-473,共6页Transactions of Nonferrous Metals Society of China

基  金:Projects(50674060, 50734005) supported by the National Natural Science Foundation of China;Projects(20051070103, 2008B030302014) supported by the Development of Science and Technology of Guangdong Province, China;Project(2008BAC46B03) supported by the National Key Technology R&D Program

摘  要:Simultaneous recovery of rare earth,nickel and cobalt resources from the anode material of hydrogen-nickel battery was performed through a hydrometallurgical process. Most of rare earth elements are separated from nickel and cobalt in the form of sulfates when the anode material is firstly leached with sulfuric acid. Then,the precipitated rare earth sulfates are dissolved with sodium hydroxide to form rare earth hydroxides. The rare earth element,zinc and manganese ions in the lixivium are also separated from nickel and cobalt by using PC-88A extractant system,and the organic phase loaded rare earth is stripped with hydrochloric acid. By neutralizing the stripping solution with rare earth hydroxide,the rare earth chloride is obtained. Under the suitable leaching conditions of sulfuric acid 3 mol/L,leaching time 4 h and temperature 95 ℃,94.5% of rare earth in the anode material is transformed into the sulfate precipitates,and the leaching ratios of nickel and cobalt can approach 99.5%. When the pH value of the extractive system is controlled in the range of 3.0-3.5,the rare earth elements in the lixivium can be extracted completely into the organic phase,and the stripping recovery of the rare earth can reach 98% in the extraction stage. The total recoveries of rare earth,nickel and cobalt are 98.9%,98.4% and 98.5%,respectively.Simultaneous recovery of rare earth, nickel and cobalt resources from the anode material of hydrogen-nickel battery was performed through a hydrometallurgical process. Most of rare earth elements are separated from nickel and cobalt in the form of sulfates when the anode material is firstly leached with sulfuric acid. Then, the precipitated rare earth sulfates are dissolved with sodium hydroxide to form rare earth hydroxides. The rare earth element, zinc and manganese ions in the lixivium are also separated from nickel and cobalt by using PC-88A extractant system, and the organic phase loaded rare earth is stripped with hydrochloric acid. By neutralizing the stripping solution with rare earth hydroxide, the rare earth chloride is obtained. Under the suitable leaching conditions of sulfuric acid 3 mol/L, leaching time 4 h and temperature 95 ℃, 94.5% of rare earth in the anode material is transformed into the sulfate precipitates, and the leaching ratios of nickel and cobalt can approach 99.5%. When the pH value of the extractive system is controlled in the range of 3.0-3.5, the rare earth elements in the lixivium can be extracted completely into the organic phase, and the stripping recovery of the rare earth can reach 98% in the extraction stage. The total recoveries of rare earth, nickel and cobalt are 98.9%, 98.4% and 98.5%, respectively.

关 键 词:氢镍电池 总回收率 阳极材料 有价金属 稀土分离 硫酸浸出 硫酸沉淀 稀土硫酸盐 

分 类 号:TG146.45[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象