检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]曲阜师范大学激光所,273165 [2]济宁学院物理系,山东省曲阜市273155
出 处:《曲阜师范大学学报(自然科学版)》2009年第2期70-73,共4页Journal of Qufu Normal University(Natural Science)
摘 要:考虑了晶体宏观对称性及晶体内部热力学对称性对物理性能的影响,先用热力学方法,以晶体的介电常数张量为例,证明二阶张量的对称性,使其张量的独立分量数目由9个减少为6个;再次将其张量主轴化后,得到3个独立分量.并以此方法推导了晶体处于电场中时描述晶体物理性能各阶张量对称性.证明结果表明,三阶对称张量的独立分量数目由27个减少到18个,四阶对称张量的独立分量数目由81个减少到21个,并且将表征晶体物理性能的物理常数表示成为(10×10)矩阵.用热力学方法证明晶体物理性能张量的对称性,优越于根据诺埃曼原则用点群方法证明晶体物理性能张量的对称性,是一种简单、直观的新方法.The infulences of crystal macroscopic symmetry and thermodynamics symmetry to the physical performance are considered in this paper. Two order tensor' s symmetry is proved by the use of the dielectric coefficient tensor and its independent components decrease from 9 to 6. After the principle axis transformation 3 independent components can be gained. The symmetry of all the tensors which can discribe the physical properties of the crystal are deduced by the same method when the crystal is in the electric field. The results show that the independent components of the three order tensor decrease from 27 to 18 and the independent components of the four order tensor decrease from 81 to 21. The physical constant which can diseribe the physical properties are shown as a (1010) matrix. Method of proving the symmetry of the tensors which can discribe the physical properties of the crystal by the use of the thermodynamics method is better than the point group method from the Neumann' s principle. Furthermore, this method is very simple and intuitive.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145