检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]福州大学阳光学院,福州350015
出 处:《重庆科技学院学报(自然科学版)》2012年第6期154-157,174,共5页Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基 金:福建省教育厅科技项目(JB11245)
摘 要:针对Kalman滤波语音增强算法的参数估计及实现问题,提出基于协作式的新型递归神经网络方法。该方法通过协作式递归神经网络算法进行自回归AR参数估计,并利用有噪自回归信号的最小均方算法进行噪声方差参数估计。仿真实验表明,综合以上2种参数估计方法的Kalman滤波语音增强算法具有高效、实现简单的特点,消噪效果明显。Based on Cooperative recurrent neural network,this paper proposes a novel thought to solve the parameter estimation and the realization problem of Kalman filter speech enhancement algorithm . Through cooperative recurrent neural network for parameter estimation of autoregressive AR, and using LMS algorithm of the autoregressive signals in noise for parameter estimation of noise variance. The simulation results show that a combination of the above two methods in parameter estimation of Kalman filter speech enhancement algorithm has high efficiency, simple features, and the effect of noise elimination is obvious.
关 键 词:Kalman滤波语音增强算法 参数估计 协作式递归神经网络 最小均方算法
分 类 号:TN912.35[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.125.194