非均质地基上条形基础沉降的随机有限元分析  被引量:4

Probabilistic analysis for settlement of strip footing on non-homogeneous soil

在线阅读下载全文

作  者:潘健[1] 周森[1] 

机构地区:[1]华南理工大学土木与交通学院,广东广州510640

出  处:《岩土工程学报》2010年第S2期196-199,共4页Chinese Journal of Geotechnical Engineering

摘  要:针对非均质地基土上条形基础弹性沉降计算的复杂性,建立了无量纲化有限元模型,处理了边界距离和弹性模量变异性问题。在确定性分析基础上,分别运用一阶Taylor展开式随机有限元(简称SFEM)和Monte-Carlo数值模拟随机有限元(简称RFEM)分析了土体弹性模量变异性对基础沉降的影响。结果表明,SFEM低估了基础沉降特征值受弹性模量变异性的影响程度。弹性模量变异系数越大,SFEM对基础沉降均值和标准差低估程度越显著,基础沉降均值随弹性模量空间相关距离逐渐减小。RFEM分析结果则呈现波动性但整体有不断增大趋势,因而基础沉降计算结果更为合理。Nondimensionalized finite element models are established considering the complexity of predicting elastic settlement of strip footing on non-homogeneous soil.Stochastic FEM based on Taylor series and Monte-Carlo random FEM are used to analyze the influence of variability of soil's elastic modulus on foundation settlement.Conclusions are drawn as follows:SFEM underestimates the influence of variability of E on eigen-values of foundation settlement;the larger the coefficient of variation of E is,the more significant underestimation of mean and standard deviation of settlement is resulted by SFEM;the mean value of settlement decreases with the increase of spatial correlation distance gradually.Since RFEM results are fluctuating and growing in whole,the result of foundation settlement is more reasonable.

关 键 词:条形基础 弹性沉降 概率 随机有限元 

分 类 号:TU433[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象