检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China Mathematics》2007年第5期737-747,共11页中国科学:数学(英文版)
基 金:the National Natural Science Foundation of China (Grant No. 10471115)
摘 要:The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.The central purpose of this paper is to illustrate that combining the recently developed theory of random conjugate spaces and the deep theory of Banach spaces can, indeed, solve some difficult measurability problems which occur in the recent study of the Lebesgue (or more general, Orlicz)-Bochner function spaces as well as in a slightly different way in the study of the random functional analysis but for which the measurable selection theorems currently available are not applicable. It is important that this paper provides a new method of studying a large class of the measurability problems, namely first converting the measurability problems to the abstract existence problems in the random metric theory and then combining the random metric theory and the relative theory of classical spaces so that the measurability problems can be eventually solved. The new method is based on the deep development of the random metric theory as well as on the subtle combination of the random metric theory with classical space theory.
关 键 词:random normed module random conjugate space measurability problem 46B09 46H25 46A22 46B22 60H25
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43