出 处:《Science China Earth Sciences》2007年第2期209-220,共12页中国科学(地球科学英文版)
基 金:Supported by the National Natural Science Foundation of China (Grant Nos. 40221301, 40125007 and 40132010)
摘 要:Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-homblende gabbro body is situated at the northeast part of the batholith. Both the granitic batholith main body and the diorite-homblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%–55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871–0.71570) and low ? Nd(t) values (?5.11–?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37–1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-homblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256–0.71318) and low ? Nd(t) values (?7.32–?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-hornblende gabbro body is situated at the northeast part of the ba- tholith. Both the granitic batholith main body and the diorite-hornblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%―55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871―0.71570) and low εNd(t) values (?5.11―?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37―1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-hornblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256―0.71318) and low εNd(t) values (?7.32―?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.
关 键 词:GRANITE higher initial 87Sr/86Sr DIORITE isotopic dating source component NANLING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...