Detecting surface geostrophic currents using wavelet filter from satellite geodesy  被引量:4

Detecting surface geostrophic currents using wavelet filter from satellite geodesy

在线阅读下载全文

作  者:HSU HouTse 

机构地区:[1]Institute of Geodesy and Geophysics,Chinese Academy of Sciences (CAS)

出  处:《Science China Earth Sciences》2007年第6期918-926,共9页中国科学(地球科学英文版)

基  金:the National Natural Science Foundation of China (Grant Nos. 40374007 and 40234039);grant for Graduate Students of the Chinese Academy of Sciences (2006)

摘  要:According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.According to the features of spatial spectrum of the dynamic ocean topography (DOT), wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96), combining an altimetry-derived mean sea surface height model (KMSS04), two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter, and the DOT models associated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global, Kuroshio and equatorial Pacific regions with that from oceanography, and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale, the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography, which indicates that ocean currents detected by satellite measurement have reached relatively high precision.

关 键 词:SATELLITE ALTIMETRY SATELLITE GRAVITY WAVELET FILTER geostrophic CURRENT 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象