检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Min-le SHANGGUAN
机构地区:[1]College of Mathematics Physics and Information Engineering,Zhejiang Normal University
出 处:《Science China Mathematics》2007年第1期81-86,共6页中国科学:数学(英文版)
基 金:This work was partially supported by the National Natural Science Foundation of China (Grant No. 10471131)
摘 要:Let G be a simple graph with maximum degree Δ(G) and total chromatic number x ve (G). Vizing conjectured that Δ(G) + 1 ? X ve (G) ? δ(G) + 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs is Δ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then x ve (G) ? 8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) + 1≤Xve(G)≤Δ(G) + 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.
关 键 词:total chromatic number planar graph F 5-subgraph 05C40
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28