A Kernel-Based Nonlinear Representor with Application to Eigenface Classification  被引量:7

A Kernel-Based Nonlinear Representor with Application to Eigenface Classification

在线阅读下载全文

作  者:张晶 刘本永 谭浩 

机构地区:[1]The Information Center of Sichuan Radio and Television University Chengdu 610073 China School of Computer Science and Technology, UESTC Chengdu 610054 China [2]School of Electronic Engineering, UESTC Chengdu 610054 China [3]School of Computer Science and Technology, UESTC Chengdu 610054 China

出  处:《Journal of Electronic Science and Technology of China》2004年第2期19-22,共4页中国电子科技(英文版)

摘  要:This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.This paper presents a classifier named kernel-based nonlinear representor (KNR) for optimal representation of pattern features. Adopting the Gaussian kernel, with the kernel width adaptively estimated by a simple technique, it is applied to eigenface classification. Experimental results on the ORL face database show that it improves performance by around 6 points, in classification rate, over the Euclidean distance classifier.

关 键 词:kernel based nonlinear representor face recognition EIGENFACES Gaussian kernel euclidean distance classifier 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象