出 处:《International Journal of Automation and computing》2004年第1期76-88,共13页国际自动化与计算杂志(英文版)
摘 要:This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.
关 键 词:Linear time invariant (LTI) proportional plus integral plus derivative (PID) control system design (CSD) COMPUTER aided control system design (CACSD) performance index genetic algorithms (GA) evolutionary computation (EC) process control r
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...