NUMERICAL SIMULATION OF EXTREMELY HEAVY RAIN AND MESO-β SCALE LOW VORTEX IN INVERTED TYPHOON TROUGH  被引量:4

NUMERICAL SIMULATION OF EXTREMELY HEAVY RAIN AND MESO-β SCALE LOW VORTEX IN INVERTED TYPHOON TROUGH

在线阅读下载全文

作  者:姜勇强 王昌雨 张维桓 陈中一 

机构地区:[1]Institute of Meteorology,PLA University of Science and Technology

出  处:《Acta meteorologica Sinica》2004年第2期195-210,共16页

基  金:supported by the Air Force Foundation under Grant No.KJ99099

摘  要:Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM (regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate (WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution model- output physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism.Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM (regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate (WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution model- output physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism.

关 键 词:extremely heavy rain (EHR) meso-B scale low vortex (MSLV). wind velocity mate (WVM). inverted typhoon trough numerical simulation 

分 类 号:P444[天文地球—大气科学及气象学] P458.121.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象