LONG TIME BEHAVIOR OF SOLUTIONS OF DAVEY-STEWARTSON EQUATIONS  

LONG TIME BEHAVIOR OF SOLUTIONS OF DAVEY-STEWARTSON EQUATIONS

作  者:郭柏灵 李用生 

出  处:《Acta Mathematicae Applicatae Sinica》2001年第1期86-97,共12页应用数学学报(英文版)

基  金:This project is supported Supported by National Natural Science Foundation of China.

摘  要:In the present paper we study the long time behavior of solutions to the Davey-Stewartson system in the Banach spaces. We make use of the properties of the semigroup generated by the linear principal operator in Lp() and prove that the Davey-Stewartson system possesses a compact global attractor Ap in Lp(). Furthermore, one show that the attractor is in fact independent of p and prove the attractor has finite Hausdorff and fractal dimensions.In the present paper we study the long time behavior of solutions to the Davey-Stewartson system in the Banach spaces. We make use of the properties of the semigroup generated by the linear principal operator in Lp() and prove that the Davey-Stewartson system possesses a compact global attractor Ap in Lp(). Furthermore, one show that the attractor is in fact independent of p and prove the attractor has finite Hausdorff and fractal dimensions.

关 键 词:Davey-Stewartson equations bounded absorbing set global attractor Hausdorff dimension fractal dimension 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象