ASYMPTOTIC BEHAVIOR OF MULTISTEP RUNGE-KUTTA METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS  被引量:1

ASYMPTOTIC BEHAVIOR OF MULTISTEP RUNGE-KUTTA METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS

作  者:张诚坚 廖晓昕 

出  处:《Acta Mathematicae Applicatae Sinica》2001年第2期240-246,共7页应用数学学报(英文版)

基  金:the National Natural Science Foundation of China (No.69974018).

摘  要:This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.

关 键 词:STABILITY multistep Runges-Kutta methods DDEs 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象