Chaos in the sense of Li-Yorke and the order of the inverse limit space  

Chaos in the sense of Li-Yorke and the order of the inverse limit space

在线阅读下载全文

作  者:Jie Lü Xiangdong Ye 

机构地区:[1]Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China

出  处:《Chinese Science Bulletin》1999年第11期988-992,共5页

摘  要:Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known that the order of (l, f) is ω<sub>0</sub> or ω<sub>0</sub> + 1. It is shown that the order of the inverse limit space (l, f) is ω<sub>0</sub> (resp. ω<sub>0</sub> + 1) if and only if f is not (resp. is) chaotic in the sense of Li-Yorke.LetI= [0, 1] and ω0 be the first limit ordinal number. Assume thatf: 1→- 1 is continuous, piece-wise monotone and the set of periods off is |2′: iε |0|U|. It is known that the order of (1, 1) is ω0 or w0 + 1. It is shown that the order of the inverse limit space (1, f) is ω0 (resp. ω0 + 1) if and only iff is not (resp. is) chaotic in the sense of Li-Yorke.

关 键 词:inverse limit space order of hereditarily decomposable chainable CONTINUA CHAOS in the SENSE of LI-YORKE REGULAR RECURRENT point. 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象