检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jie Lü Xiangdong Ye
机构地区:[1]Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
出 处:《Chinese Science Bulletin》1999年第11期988-992,共5页
摘 要:Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known that the order of (l, f) is ω<sub>0</sub> or ω<sub>0</sub> + 1. It is shown that the order of the inverse limit space (l, f) is ω<sub>0</sub> (resp. ω<sub>0</sub> + 1) if and only if f is not (resp. is) chaotic in the sense of Li-Yorke.LetI= [0, 1] and ω0 be the first limit ordinal number. Assume thatf: 1→- 1 is continuous, piece-wise monotone and the set of periods off is |2′: iε |0|U|. It is known that the order of (1, 1) is ω0 or w0 + 1. It is shown that the order of the inverse limit space (1, f) is ω0 (resp. ω0 + 1) if and only iff is not (resp. is) chaotic in the sense of Li-Yorke.
关 键 词:inverse limit space order of hereditarily decomposable chainable CONTINUA CHAOS in the SENSE of LI-YORKE REGULAR RECURRENT point.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28